Expression of GLUT2 in insulin-secreting AtT20 pituitary cells.

نویسندگان

  • E L Davies
  • K I Shennan
  • K Docherty
  • C J Bailey
چکیده

The importance of the glucose transporter isoform, GLUT2, in the construction of glucose-sensitive surrogate insulin-secreting cells was evaluated using murine pituitary AtT20 cells. The cells were double transfected with cDNAs for human preproinsulin (hppI-1) driven by the cytomegalovirus promoter, and human GLUT2 driven by the beta-actin promoter. The stably transfected clone, AtTinsGLUT2.36, which strongly expressed both the hppI-1 and GLUT2 genes, constitutively released 7.5 ng/10(6) cells/24 h of immunoreactive insulin-like material, 75% of which was fully processed mature human insulin. Increasing glucose concentrations in the subphysiological range up to 50 microM increased insulin release, but greater glucose concentrations did not further increase insulin release. Suppression of the low-K(m) glucose-phosphorylating enzyme, hexokinase, with 2-deoxy-D-glucose increased glucose-stimulated insulin release by two- to threefold in the presence of subphysiological and physiological glucose concentrations up to 10 mM. Physiological glucose concentrations increased the amount of GLUT2 mRNA, indicating that the beta-actin promoter responds in a glucose-dependent manner. Implantation of 2 x 10(7) AtTinsGLUT2.36 cells intraperitoneally into streptozotocin-diabetic nude mice slowed the progression of hyperglycaemia. The implanted cells formed vascularised tumour-like cell aggregates attached to the peritoneum. The results demonstrate that the beta-actin promoter is partially regulated by glucose. Expression of GLUT2 enables glucose to enter the cell at high K(m), but high-K(m) glucose phosphorylation is also required to signal glucose-stimulated genes affecting insulin release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

miR-26a Plays an Important Role in Cell Cycle Regulation in ACTH-Secreting Pituitary Adenomas by Modulating Protein Kinase Cδ

The functional aftermath of microRNA (miRNA) dysregulation in ACTH-secreting pituitary adenomas has not been demonstrated. miRNAs represent diagnostic and prognostic biomarkers as well as putative therapeutic targets; their investigation may shed light on the mechanisms that underpin pituitary adenoma development and progression. Drugs interacting with such pathways may help in achieving diseas...

متن کامل

تمایز بن‌یاخته‌های‌ جنینی‌ انسان‌ به‌ سلولهای‌ مولد انسولین‌

Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...

متن کامل

Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

Pituitary adenomas comprise approximately 10-15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different ...

متن کامل

Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway

Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular endocrinology

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 1998